Carol Y.Cheung. A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre. Nature Biomedical Engineering 5(6):1-11 (2021). doi: 10.1038/s41551-020-00626-4.
Fatema Tuj Johora Faria, Mukaffi Bin Moin, Pronay Debnath, Asif Iftekher Fahim, Faisal Muhammad Shah. Explainable Convolutional Neural Networks for Retinal Fundus Classification and Cutting-Edge Segmentation Models for Retinal Blood Vessels from Fundus Images (2024), https://doi.org/10.48550/arXiv.2405.07338
P. T. Karule; Sujata B. Bhele; Prasanna Palsodkar; Poonam T. Agarkar; Hirendra R. Hajare; Prashant R. Patil. Detection of Multi-Class Multi-Label Ophthalmological Diseases in Retinal Fundus Images Using Machine Learning (2024), DOI: 10.1109/ICICET59348.2024.10616291
Tasnim Samir Elsayed, Muhammad Ali Rushdi. Computer-aided multi-label retinopathy diagnosis via inter-disease graph regularization (2024), https://doi.org/10.1016/j.bspc.2024.106516
Sivaz, O., Aykut, M. Combining EfficientNet with ML-Decoder classification head for multi-label retinal disease classification. Neural Comput & Applic 36, 14251–14261 (2024). https://doi.org/10.1007/s00521-024-09820-w